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Project Progress Summary

In this project we have proposed to investigate a number of experimental and theoretical issues
associated with the practical use of multi-version software to provide run-time tolerance to software

faults Ix_ the _od reported here we have worked on the following: Ok-,'÷ _._ _ -_-__ _ _=_ r- !- '

_"- We have finished developing and evaluating a specialized tool for measuring testing coverage
for a variety of metrics. ,. ,,_--_ _- _ _-

o We have started using the tool "to collect information on the relationships between software

faults and coverage provided by the testing process as measured by different metrics ......
(including data flow metrics). We have found considerable correlation b-etweencoverage -:
provided by some higher metrics and the elimination of faults in the code.

o We have continued studying back-to-back testing as an efficient mechanism for removal of
un-correlated faults, and common-cause faults of v_---'-_61_s-p_in_- :_ - :-

o We continued studying software reliability estimation methods based on non-random ,,¢,1 .......
sampling, and the relationship between software reliability and co-'d_6ovei:_ige provided "
through testing. _-.i__._:_-. : _ _._'- _

o We continued investigaiing existing, and worked orr£ormul_f_oew fault-tolerance
models, In particular, we have finished simulation studies :of the Acceptance __tihg and
Multi-stage Voting algorithms, and found t-fhat te_ two schemes for _ fault-iolerance
are superior in many respects to so_tlae commonly used schemes. Particularly encouraging are
the safety properties of the Acceptafice testing scheme.

This report describes the results obtained in the period March 1, 1989 to August 31, 1989.
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1. General Project Description

Software reliability is very important in critical software application areas. For example, space

based systems, avionics systems, critical nuclear power plant systems, and life-critical medical

systems are all expected to operate reliably even under extremely severe conditions. However,

practice shows that critical systems are not immune to software related failures [e.g. Neu85].

Currently there are two basic ways of showing that code is 100% correct. One is program proving

and the other exhaustive testing [Adr82, AnR74, Cri85, How82,87]. Neither approach is currently

practical for use with complex software systems. Techniques for proving software correct are not

mature enough and exhaustive testing is ruled out principally by the huge number of possible

inputs. Although significant progress has been made in developing efficient and effective

development and testing techniques which greatly aid in avoiding software faults through formal

constructive and analytical methods [e.g. Adr82, How87, Hor87], these techniques do not

guarantee production of error-free code. Furthermore, quantitative relationships between software

reliability and the quality of the applied development and testing techniques have received relatively

little attention. In modern critical systems the problem is further aggravated by the need for

extensive concurrent processing.

The only way of handling unknown and unpredictable software failures (faults) is through fault-

tolerance. Fault-tolerance already is, or is planned to be, part of many critical software and hardware

systems such as nuclear power plants [Gme79, Bis86] and aerospace systems [Mar82, Wi183,

Spe84, Mad84, Tro85, Hi185, Avi87, Vog88a]. Two methods for achieving software fault-tolerance

are in common use today. These are the N-version programming scheme [Avi77, Che78, Avi84] and

the recovery block scheme [Ran75]. Both schemes are based on software component redundancy

and the assumption that coincident failures of components are rare and when they do occur responses

are sufficiently dissimilar so that the mechanism for deciding answer correctness is not ambiguous.

For best results all of these techniques require the component failures to be mutually independent, or

at least that the positive inter-component failure correlation is low. Fault-tolerant software (FTS)

mechanisms based on redundancy are particularly well suited for parallel processing environments

where concurrent execution of redundant components may drastically improve sometimes prohibitive

costs associated with their serial execution.
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Hence,the study of both multi-version and singleversion softwarefault-avoidanceand fault-

toleranceissues,with anemphasison theissueof fault correlationin multiple softwareversions,is

of utmostimportancewherecritical softwareis concerned.We haveproposedto studydifferent
testingapproachessuitablefor developmentof singleandmulti-versionhigh-reliability software,

modelsingleandmulti-versionreliability,andinvestigatedifferentfault-tolerancemechanisms.

In the period 1985-87NASA fundeda multi-university experimentto develop 20 functionally

equivalentsoftwareversions,knownasRSDIMU softwareversions.Theseversionsareto beused

to determinethereliability gainsof severalcommonfault-tolerantsoftwaresystems,includingN-

versionprogramming, recovery-block[Ran75,Avi84], andhybrid schemessuchastheconsensus
recoveryblock technique[Sco87].

In theperiodreportedherewehaveworkedon thefollowing:

We havefinisheddevelopingandevaluatingaspecializedtool for measuringtestingcoverage

for avarietyof metrics.

We havestartedusingthetool to collect informationon therelationshipsbetweensoftware
faults and coverageprovided by the testingprocessas measuredby different metrics

(including dataflow metrics).We havefound considerablecorrelation betweencoverage

providedby somehighermetricsandtheeliminationof faultsin thecode.

We havecontinuedstudyingback-to-backtestingasanefficientmechanismfor removalof
un-correlatedfaults,andcommon-causefaultsof variablespan.

We continued studying software reliability estimation methods basedon non-random

sampling,and the relationshipbetweensoftwarereliability and code coverageprovided
throughtesting.

We continued investigatingexisting, and worked on formulation of new fault-tolerance
models.In particular,we have finishedsimulationstudiesof the AcceptanceVoting and

Multi-stageVoting algorithms,andfoundthatthesetwo schemesfor softwarefault-tolerance

aresuperiorin manyrespectsto somecommonlyusedschemes.Particularlyencouragingare

thesafetypropertiesof theAcceptancetestingscheme.

Thisreportdescribestheresultsobtainedin theperiodMarch 1,1989to August31,1989.
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2. Results

2.1 Fault-Avoidance Through Coverage Testing

BGG, Basic Graph Generation and Analysis tool, was developed to help studies of static and

dynamic software complexity, and testing coverage metrics. It is composed of several stand-alone

modules, it runs in UNIX environment, and currently handles static and dynamic analysis of

control and data flow graphs (global, intra-, and inter-procedural data flow) for programs written

in full Pascal. Extension to C is planned. The tool is described in more detail in Appendix I where

we describe the structure of BGG, give details concerning the implementation of different metrics,

and discuss the options it provides for treatment of global and inter-procedural data flow.
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Functional

Non-UniformRandom
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Figure 1. Comparison of linear block coverage observed for two random testing profiles and a
functional data for a program out of the 20-version set.

BGG is currently being used to obtain coverage growth curves for acceptance, and other, test data

used in the RSDIMU experiment. Figure 1 illustrates the coverage growth curves we have

observed with random and functional (designed) test cases for the program program P9 (uclaD)

using an early version of the system.
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It is interesting to note that coverage growth follows an exponential growth curve, and reaches a

plateau extremely quickly. In the example, this happens after about 100 cases. Once the coverage is

close to saturation for a particular testing prof'fle, its fault detection efficiency drops sharply. This is

illustrated in Figure 2 where we plot the coverage provided by the functional testing profile shown

in Figure 1, and the cumulative number of different faults detected using these test cases. Out of

the 10 faults that the code contained, 9 were detected with the functional data set used within the

first 160 cases.

It is clear that apart from providing static information on the code complexity, and dynamic

information on the quality of test data in terms of a particular metric, BGG can also be used to

determine the point of diminishing returns for a given data set, and help in making the decisions on

when to switch to another testing profile or strategy.
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Figure 2. Linear block coverage and fault detection efficiency observed for program P9 with
functional acceptance test cases.

Similar measurements have been taken for all 20 version of the RSDIMU set. We are currently

studying the correlation between higher metrics, such as p-uses [Fra88], and the reliability of the

versions.
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2.2 Fault-Avoidance: Using Back-to-Back Testing for Regression
Testing

An interesting variant of back-to-back testing is its application to regression testing of a single

program. Regression testing is typically conducted either during the production, or in the

maintenance phase, after modification of software. The intention is to check back on any changes,

and make sure that the changes have not injected, and/or stopped masking, faults, or have corrupted

already tested functions and parts of the code. Sometimes it is possible to conduct regression testing

using all of the data available for testing, but often, due to execution time and schedule constraints, it

is necessary to limit the regression testing to a smaller subset of the test data. An obvious problem

that arises during regression testing is the evaluation of the responses received from the newly

modified software. If the only failures of concern are self-reporting failures (e.g. system crash, or an

obvious disruption of the computer service) a relatively simple acceptance test, or consistency check,

may be sufficient to verify the correctness of the answers. On the other hand, if the correctness of the

responses is less obvious, then a more elaborate, and often very time consuming, scheme must be

used. Comparison of the answers with an existing, progressively generated and growing, database

of "correct" answers is a natural solution.

Some of the problems associated with regression testing may be:

. Regression testing is limited to a smaller subset of the total data set. In this situation there is

always some doubt that the "important" test case(s), which could reveal an inadvertently injected

bug, is(are) not part of the regression set. Regression testing could be limited to a subset for

several reasons. For example, only a limited execution and calendar time is available for the

regression testing. This can possibly be alleviated through parallel execution of mutually

exclusive but exhaustive subsets of the full test set. Another problem, which may be more

difficult to resolve, is the storage problem. It is quite conceivable that the amount of storage

required to record the input and output data for a complete set may be inordinately high.

However, it is possible that the input set can nevertheless be reproduced, within an acceptable

time frame, using some generation algorithm, but that the output verification remains a problem.

. Regression testing does not employ random data. There are indications that in some

circumstances random data may detect more faults than more conventional structured, partitioned

and special value testing (e.g. EhE88, Ham88). Therefore, it is desirable to supplement testing
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based on a designed (fixed or growing) test set with random test data. The problem is that, unless

failures are self-reporting, it may be very expensive to regression test with random data because

of storage problems, answer correctness problems and similar.

3, Regression testing does not monitor intermediate program states. There is experimental evidence

(e.g. ShL88) that monitoring of internal program states can considerably enhance failure

detection efficiency of a testing approach. However, time, storage and correctness problems can

present a considerable deterrent to practical use of this technique for regression testing based on

the data-base approach.

There are, of course, other possible deficiencies of regression testing that could be discussed, not the

least of of them being diminished flexibility of "fixed" data regression sets to changes in the

operational input profiles.

Obsolete

Old

New

Ex[
differen.

Comparator

OK Warning

Figure 3. Back-to-back regression testing.
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One approach that can help in solving at least some of the problems is back-to-back testing. One of

the primary problems with development use of back-to-back testing is the need for independently

developed multiple software versions in order to exploit fault detection properties of software

diversity. This can be expensive, and it is possible that some of the similar faults will not be detected.

This problem does not exist with regression testing. Regression testing is used primarily to make

sure that any applied changes have not corrupted the code and functions that have already been tested

and found correct. Because generation of a new version of the code is implicit in any software

modification, functionally "almost-equivalent" 2-tuples are available at no extra cost.

This means that the "new" and "old" versions of the code can be run against each other to verify

invariance of the the functions and responses that were not supposed to be affected by the applied

changes. A model of back-to-back regression testing data-flow is illustrated in Figure 3. The circles

depict two consecutive versions of the software, the squares the sources of data (files), and the

diamond the answer comparator. The response comparisons can be made at almost any desired level;

output only, module/function level, intermediate states, even line level. The nice part is that there is

practically no problem with the insertion of the sampling probes because the code is not only

functionally almost identical, but also structurally very similar (the differences, of course, exist in the

modified parts of the code).

We assume that three "types" of regression data are available. An invariant ("old") set, which

contains all the test cases which are still valid and completely unchanged following the program

modification. A set containing "obsolete" test cases, cases which are no longer valid because of

changed requirements, variable ranges, functionality of the code, and similar. And, finally, a set of

"new" or changed test cases which contains all the test cases that had to be modified, or were

generated completely anew, to accommodate the changes in the functionality and structure of the

code. One file, "expected differences", contains a "list" of test cases (and responses) for which the

differences between the "old" and "new" code versions would be expected to arise. This data needs

to be generated, based on performed modification(s), prior to any regression testing. For example, if

upward compatibility of versions is required because the changes are enhancements which should not

affect previous performance (e.g. and extension of a communication protocol), then all of the "old"

data set responses for key parameters should match (except for new variables), while the "expected

differences" will derive primarily from the "new" data set.
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There are two general output states of the system. The system either issues a warning, or it accepts

the comparison (OK event). In principle, only unexpected differences or unexpected agreement

between the outputs should raise an alarm. However, it is prudent to re-examine all outputs where

differences arise unless the size and sign of the expected differences is included in the data base.

Unexpected disagreements between the versions may be indicative of incompletely corrected faults,

newly introduced faults, or old faults that are no longer masked owing to the implemented code

changes. The question of tolerances, and false alarms should also be considered [Vou88a]. It is also

possible that an expected difference in response does not materialize. This should also be the cause

for alarm. The cause could be, for example, that the implemented change was not successful

(although not detrimental), or that there is a fault in the test case, etc. The states are illustrated in

Figure 4.

A special case is the use of randomly generated data in regression testing. These data sets (either

generated dynamically, or in part stored) can be used to probe for possible omissions and "holes" in

the regular regression test set. A big advantage that the testing successive versions back-to-back

offers is that the random input data, and the corresponding answers, do not have to be stored but can

be generated during the testing. Furthermore, the range and the profile of these test cases can be

readily changed to accommodate a different operational profile without a (possibly) costly re-

generation of the regression data base.

WARNING

ment

Initial

__.._ . u x.peTddifferencene

rerence

Figure 4.Transition states for (back-to-back) regression testing.
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Another obvious advantage of using back-to-back regression testing is that a very large number of

variables and intermediate states can be monitored relatively cheaply. This should increase sensitivity

of the testing to any anomalies introduced or revealed during the modifications. Furthermore,

probing of intermediate states and classification of the expected outputs according to whether a

difference would, or would not, be observed with respect to the earlier version can yield useful

information about the expected and actual coupling of, and dependencies within, the code (c.f.

perturbation or mutation testing).

The cost efficiency of back-to-back regression testing depends on the available resources, and on the

nature of the failures. It is shown that the process is not cost-effective if mainly self-reporting

failures (differences) are present after the modification, and if the available resources allow for a fast

table look-up of the answers. However, the technique becomes particularly effective if random

testing is used to supplement regression data sets, a large number of intermediate states is monitored,

or there are frequent changes in the operational profile and variable ranges between versions, and, of

course, if there are storage problems but input data can be dynamically reproduced.

We are currently in the process of using the incremental correction versions of RSDIMU software to

verify usefulness and efficiency of regression back-to-back testing.

2.3 Safety Properties of Some Hybrid Fault-Tolerance Schemes

The performance of classical Majority voting, and of some more reliable hybrid models such as

Consensus Recovery Block (CRB) model, deteriorates if the output space is reduced. Binary

output space is an extreme case where CRB acts as a simple voter, and the acceptance test is never

invoked. This lead us to develop a new hybrid models which with better performance in reduced

output space. One ways is to use a better voting strategy (e.g. Consensus Majority Voting

[Sun85]. Another is to reduce, or completely eliminate, as many wrong answers as possible before

voting.

The model of the scheme we discuss here is called Acceptance Voting (AV). It is

illustrated in Figure 5. N functionally equivalent software versions are independently developed,

together with an acceptance test, and a voting procedure. When AV is invoked, all versions execute

and submit their outputs for acceptance testing. All answers are acceptance tested. Only the outputs
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thatpasstheacceptancetest continue on to the voter. Each time the model is invoked it may vote

with a different number of outputs, depending on how many results were passed to the voter by

the acceptance testing. The voting may be done using any suitable voting scheme. We have

examined the influence of three voting schemes, the two-out-of-n voting (2N) [SCO87], the

majority voting (MV) and the dynamic majority voting.

es_l_ Version _n

correct r g result
1-oc (x

reject __ accept accept_ reject

ccess fa_l e

Figure 5 Block diagram of the Acceptance Voting model

Two-out-of-N and Majority voting are well known. In the case of AV we define Dynamic Majority

voting in the following way. In dynamic majority voting the agreement number is

m = Ceiling [(k1._._)]+

where k is the number of results passed to the voter, and not N. It is important to mention that k

changes dynamically, hence m is different for each run. The difference between the dynamic

voting and majority voting is that even if a small number of results are passed to the voter, dynamic

voting will try to find the majority among them. Majority voting will fail if there are less than

majority of the answers passed to voter. Thus, it is better solution than a fixed agreement number

used in a majority voting scheme.
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A systemmay bedescribedassafety-criticalif anexecutiontime failureresult in
death,injury, lossof equipmentorproperty,or environmentalharm[LEV87]. All failures are not

of equal consequences, and a relatively small number of failures are catastrophic in nature. The

aim is to eliminate all failures, if possible; if not, as many as possible. This implies that software

reliability should be increased or some techniques such as fault-tolerant should be used. A common

theory, that a reliable software system is also safe is not necessarily true. This is because, a

reliable software may fail causing a catastrophe, on the other hand a less reliable software may fail

more number of times, but causing non-vital failures. In fact, it may be desirable to trade a certain

amount of overall reliability, for higher safety.

We classify failures into two groups: safe failures and unsafe failures. When

a) System outputs a wrong result as a correct, we have an unsafe failure,

b) System can not decide on the correctness of a result, and is unable to output an answer, but

is "aware" of the fact that it will fail, and can therefore forward this knowledge to the user,

we have an safe failure.

In Figures 6 and 7 we illustrate our results through the number of observed unsafe-failures (out of

a total 100,000 simulation test cases) against the version reliability, for three different methods. We

have shown results for binary output space, an extreme situation which approximates the safety

behavior of the system in the presence of highly dependent failures, and 131=13,2=_.

In binary output space Consensus Recovery Block acts as a simple voter and is equivalent to N-

version programming with majority voting. There is always an answer, right or wrong, that may

satisfy required number of agreeing versions. Voter will output this answer as a correct, which

may result in an unsafe-failure. The number of unsafe-failures in the AV model is lower than in

CRB model. This is because in AV acceptance testing removes most of the wrong answers, there

by reducing the probability of them to have the required agreement.

Acceptance test reliability (1 - 13) does not affect unsafe-failures in Consensus Recovery Block

model because in binary space the test is never invoked (for odd N). Unfortunately, at the same

time, every CRB failure is an unsafe one. Situation improves with larger effective output space

cardinality (decision space), but CRB model exhibits a higher number of unsafe-failures than AV

model under any output space cardinality or voting strategy. In AV, as the acceptance test

deteri rates ([3 is increases), the number of unsafe-failures is increases for the same version

reliability.
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voting vs. version reliability under binary output space, for N = 3
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2.4 Other Work in Progress

1. We are empirically validating Consensus Recover3/Block and Majority Consensu_ voting

mechanisms.

. We continue to investigate cost-effectiveness of multi-version development, testing, and run-

time fault-tolerance approaches (assuming single-stage and multi-stage voting). The strategies

and methods are being evaluated with respect to the development of a single ultra-high reliability

component. Of special interest are the fault-avoidance properties offered by multi-version

software development, fault-elimination properties of back-to-back testing, and cost-efficient

detection and elimination of correlated faults.

. We continue to investigate software reliability models in order to provide a basis for estimation

of the reliability of the components making up a fault-tolerant software (F'FS) system. Software

testability modeling, based on control and data flow construct coverage, is being conducted. A

coverage based software reliability model will be developed and used as part of the FTS

reliability modeling process.

. We continue to study single stage and multistage voting and fault-tolerant software performance

issues. Particular attention is directed towards incorporation of the failure dependencies

(positive or negative correlation) into the methods and models used to predict (estimate)

reliability offered by a particular fault-tolerance mechanism or strategy.

5. We continue to investigate empirical multi-version software properties. For this we are using the

code developed during the summer 1987 RSDIMU certification effort
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BGG: A Testing Coverage Tool 1

Mladen A. Vouk and Robert. E. Coyle 2

North Carolina State University
Department of Computer Science, Box 8206

Raleigh, N.C. 27695-8206

Abstract

BGG, Basic Graph Generation and Analysis tool, was developed to help studies of static and
dynamic software complexity, and testing coverage metrics. It is composed of several stand-alone
modules, it runs in UNIX environment, and currently handles static and dynamic analysis of
control and data flow graphs (global, intra-, and inter-procedural data flow) for programs written
in full Pascal. Extension to C is planned. We describe the structure of BGG, give details
concerning the implementation of different metrics, and discuss the options it provides for
treatment of global and inter-procedural data flow. Its capabihties are illustrated through examples.

IResearch supported in part by NASA Grant No. NAG-I-983
2Teletec Corporation, Raleigh, N.C.
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I. Introduction

BGG: A Testing Coverage Tool

Mladen A. Vouk and Robert. E. Coyle 3

North Carolina State University
Department of Computer Science, Box 8206

Raleigh, N.C. 27695-8206

Software testing strategies and metrics, and their effectiveness, have been the subject of numerous

research efforts (e.g. comparative studies by Nta88, Cla85, Wei85, and references therein).

Practical testing of software usually involves a combination of several testing strategies in hope that

they will supplement each other. The question of which metrics should be used in practice in order

to guide the testing and make it more efficient remains largely unanswered, although several basic

coverage measures seem to be generally considered as the minimum that needs to be satisfied

during testing.

Structural, or "white-box", approaches use program control and data structures as the basis for

generation of test cases. Examples include branch testing, path testing [Hen84, WooS0] and

various data flow approaches [Hec77, Las83, Rap83, Fra88]. Functional, or "black-box",

strategies rely on program specifications to guide test data selection [e.g. How80,87, Dur84].

Some of the proposed strategies combine features of both functional and structural testing as well

as of some other methods such as error driven testing [Nta84].

Statement and branch coverage are regarded by many as one of the minimal testing requirements; A

program should be tested until every statement and branch has been executed at least once, or has

been identified as unexecutable. If the test data do not provide full statement and branch coverage

the effectiveness of the employed testing strategy should be questioned. Of course, there are a

number of other metrics which can provide a measure of testing completeness. Many of these are

more sophisticated and more sensitive to the program control and data flow structure than statement

or branch coverage. They include path coverage, domain testing, required elements testing, TERn

(n>3) coverage, etc. [How80, Hen84, Whi80, Nta84 and reference therein].

3Teletec Corporation, Raleigh, N.C.



NASA/NAG-1-983/Semi-AnnualReport/1.1/NCSU.CSC.(DFM,MAV)ISep-89 22

Thesimplestdata-flow measureis thecountof definition-usepairsor tuples[Her76].Thereare

severalvariantsof this measure.More sophisticatedmeasuresarep-uses,all-uses,anddu-paths
[Fra88,Nta88], ordereddatacontexts[Las83], requiredpairs [Nta84,88],andsimilar. Thedata-

flow basedmetricshavebeenunderscrutinyfor sometime now aspotentiallybettermeasuresof

the testing quality than control-flow basedmetrics [e.g. Las83, Rap83, Fra88, Wey88].

However, one recent study [Zei88] indicatesthat most of the data-flow metrics may not be
sufficiently completefor isolateduse,andthatin practicetheyshouldbecombinedwith control-
flow basedmeasures.

Overtheyearsa numberof softwaretoolsfor measuringvariouscontrol anddataflow properties
andcoverageof softwarecodehavebeenreported[e.g.Ost76(DAVE), Fra86(ASSET),Kor88].

Unfortunately,in practicethesetoolsareeitherdifficult to obtain,or difficult to adaptto specific

languagesandresearchneeds,or both.To circumventthat, and alsogain betterinsight into the
problematicsof buildingtestingcoveragetools,wehavedevelopedasystemfor staticanddynamic
analysisof controlanddataflow in software.

Thesystem,BGG (BasicGraphGenerationandAnalysissystem),wasbuilt asaresearchtool to

helpunderstand,study,andevaluatethemanysoftwarecomplexityandtestingmetricsthat have
beenproposedasaidsin producingbetterquality softwarein an economicalway. BGG allows

comparisonof coveragemetrics and evaluationof complexity metrics. It can also serveasa

support tool for planning of testing strategies(e.g. stoppingcriteria), as well as for active
monitoringof thetestingprocessanditsquality in termsof thecoverageprovidedby thetestcases

used.SectionII of the paperprovidesanoverviewof theBGG systemstructureand functions.

SectionIII givesdetailsconcerningtheimplementationof variousmetricsandof handlinglocal,

globalandinter-proceduraldataflow. SectionIV illustratesthetool capabilitiesthroughexamples.

II. Structure and Functions

A simplified top level diagram of BGG is shown in Figure 1. BGG is composed of several

modules which can be used as an integrated system, or individually given appropriate inputs, to

perform static and dynamic analyses of control and data flow in programs written in Pascal. The

tool currently handles full Berkeley Pascal 4 with one minor exception. The depth of the "with"

statement nesting is limited to one. The extension to greater depth is simple and will be

implemented in the next version of the system. BGG runs in UNIX environment. Its

4Standard UNIX compiler, pc.
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implementationunderVM/CMS is plannedtogetherwith its extensionto analysisof programs

written in the C language. BGG itself is written in Pascal, C and UNIX C-shell script.

Terminal

lied

Graph
Analys

Static
Instrumented !Source

Compiler(

Instrumented

Program

_ Source
Code
File

}h Code

Language
Tables (FMQ)

Test Data

pipe Dynamic
Coverage
Analysis

Figure 1. Schematic diagram of the information flow in the BGG system of tools.

BGG pre-processor provides the user interface when the tool is used as an integrated system. It

also performs some housekeeping chores (checks for file existence, initializes appropriate language

tables and files, etc.), and prepares the code for processing by formatting it and stripping it of

comments. The language tables are generated for the system once, during the system installation,

and then stored. The front-end parsing is handled through the FMQ generator [Mau81, Fis88].
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This facility also allows for relatively simple customizationof the systemregardingdifferent
programminglanguagesand languagefeatures.Also, eachof the BGG moduleshasa set of

parameterswhich canbeadjustedto allow analysesof problemswhich may exceedthedefault
valuesfor thenumberof nodes,identifierlengths,nestingdepth,tablesizes,etc.

Pre-processedcode,variouscontrolinformationandlanguagetablesareusedasinputto theBGG-

Static processor.This processorconstructscontrol anddata-flow graphs,and performsstatic
analysisof the code.Thesegraphsare the basisfor all further analyses.Statisticson various
metricsandcontrol-flowanddata-flowanomalies,suchasvariablesthatareusedbutneverdefined

etc,arereported.BGG-Staticalsoinstrumentsthecodefor dynamicexecutiontracing.

When requested,BGG executestheinstrumentedcodewith providedtestcasesandanalyzesits

dynamic execution trace through BGG-Dynamic. The dynamic analysis output contains

information (by proceduresandvariables)aboutthecoveragethat thetest casesprovideunder
differentmetrics.

WheninstrumentingcodeBGG insertsacall to aspecialBGGprocedureatthebeginningof each

linear code block. It also addsempty blocks to act as collection points for branches.The
instrumentationoverheadin executablestatementsis roughlyproportionalto thenumberof linear
blockspresentin thecode.In ourexperiencethiscanaddbetween50%and80%to thenumberof

executablelines of code. The run-time tracing overheadfor the instrumentedprogramsis

proportionalto thenumberof linearblocksof codetimesthecostof thecall to theBGG tracing
procedure.Thelattersimplyoutputsinformationabouttheblockandtheprocedurebeingexecuted.

Theraw run-timetracinginformationmaybestoredin temporaryfiles, andprocessedby BGG-
Dynamic later. However,often the amountof raw tracing information is so large that that it

becomesimpracticalto storeit. BGG-Dynamiccanthenacceptinput via apipeandprocessit on-

the-fly.BecauseBGG-Dynamicanalysesmaybevery memoryandCPUintensive,particularlyin
thecaseof data-flowmetrics,interactivetestingmaybeaslowprocess.Partof theproblemliesin

thefact thatBGGis still a researchtoolandwasnotoptimized.Weexpectthatthenextversionof

BGG will be muchfasterandmoreconservativein its useof memory.It will permit splicing of

information from severalshort independentruns,sothatprogressivecoveragecanbecomputed
withoutregressionrunsonalreadyexecuteddata.

k
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Currently BGG computes the following static measures: counts of local and global symbols, lines

of code (with and without comments), total lines in executable control graph nodes, linear blocks

of code, control graph edges and graph nodes, branches, decision points, paths (the maximum

number of iterations through loops can be set by the user), cyclomatic number, definition and use

counts for each variable, definition-use (du) pair counts, definition-use-redefinition (dud) chain

counts, count of definition-use paths, average definition-use path lengths, p-uses, c-uses, and all-

uses. Dynamic coverage is computed for definition-use pairs, def'mition-use-redefinition chains, p-

uses, c-uses and all-uses. Definition-use path coverage and path coverage for paths that iterate

loops k times (where k can be set by user) will be implemented. There are several system switches

which allow selective display and printing of the results of the analyses.

III. Graphs and Metrics

Control and data flow graphs

Each linear block of Pascal code is a node in a graph. A linear code sequence is a set of simple

Pascal statements (assignments, I/O, and procedure/function calls ), or it is a decision statement of

an iterative or conditional branching construct. When a linear block is entered during execution all

of its statements are guaranteed to be executed. Decision statements are always separated out into

single "linear blocks". Procedure/function calls are treated as simple statements which use or define

identifiers and/or argument variables. A linear block node has associated with it a set describing

variables defined in it, and a set describing variables used in it. Also attached to each node is the

node execution information.

In each Pascal statement all identifiers for simple local and global variables, named constants

defined using CONST, and all built-in Pascal functions are considered. Built in functions are

treated as global identifiers. For the purpose of the definition-use analyses, explicit references to

elements of an array are treated as references to the array identifier only. Similarly, references to

variables pointed to by pointers are currently reduced to references to the first pointer in the pointer

chain. An extension that will differentiate between a stand-alone use of a pointer (e.g. its def'mition

or use in a pointer expression), and use of a pointer, or a pointer chain, for de-referencing of

another variable, will be implemented in the next version of the tool. Input/output statement

identifiers (function names) are considered used, while their argument variables are used (e.g.

write, writeln) or defined (e.g. read, readln). The file identifier is treated as a simple variable

(defined for input, used for output).
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Calls to functionsor proceduresaretreatedaslocal statementswhich usetheprocedure/function5

identifier. In the caseof function calls this useis precededby oneor moredefinitions of the

function identifier in thecalled function itself. This definition is propagatedto thepoint of call,

whereasingledefinitionof thefunctionidentifier is thenfollowedby its local use.From thepoint
of view of thecalling procedure,the actualargumentvariablesareeither usedonce,or defined

once,or both usedand definedonce(in that order), dependingon whether the corresponding
parameteris used(anynumberof times),defined(anynumberof times),or usedanddefined (in

any order) in the procedurethat is called. Definitions are returned_ if the corresponding
parameteris avar parameter.

The point of call ordering: used-defined, for var parameters used and defined in any order, was

chosen as a warning mechanism for programmers that have access to analyses of their own code

but may not have access to the analyses, or the actual code, of the procedures they call. The idea is

to impress on the programmers that the variable may be used in the invoked unit, and therefore

they should be careful about what they send to it because the definition may not mask an undefined

argument variable, an illegal value, etc. The way we handle procedure arguments permits a limited

form of inter-procedural data flow analysis, and offers a more realistic view of the actual flow of

information through the code. It also means that the code for the called procedures must be

available for BGG to analyze. An alternative is not to use this option, but use the defensive

approach of assuming that every argument variable of a var parameter is always used and then

defined.

A global variable that has been _ in a called procedure, or used in the procedures called

within the called procedure, is reported as used at the point of call. A global variable that has been

9.IILV....__IB_ in the called procedure, or deeper, is reported defined at the point of call. However, a

global variable that has been used and defined (in any order) in the called procedure, or in any

procedure called within the called procedure to any depth, is reported as defined and then used at

the point of call. The reason global variables are treated differently from procedure arguments is to

highlight global variable definition in the called procedure(s) by making it visible as a definition-

use pair at the point of call. Again, it is a form of warning to the programmers that the underlying

procedures have changed a global variable value, may have re-used this value, and in turn may

5From here on, we use term "procedure" to mean procedure or function, unless a distinction has to be made between
the two.
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have(if thedefinition waserroneous)affectedvaluesof some,or all, theparametervaluespassed
backtothepoint of call.

All procedureparametersareassumedto bedefined(pseudo-defined)onentry.Global variables

usedin aprocedurearealsopseudo-definedon entry. Parametersand global variablessetin a
procedureor function areassumedused(pseudo-used)onexit. The actualuseanddefinition of

completelyglobalvariables,andlocallyglobalvariables,is fully accountedfor in eachprocedurein

which theyoccurasfar astheir usesandre-definitionsareconcerned.On return to the calling

procedure,anyglobalvariablesthathavebeenusedor definedin thecalledprocedurearereported
assingleusesand/ordefinitionsof that globalvariableat thepoint of call, however,pseudo-uses

enabledwithin a procedurearenot reportedback to thepoint of call. Thetool hasoptionsthat
allowdifferenttreatmentof globalvariables(e.g.pseudodefinitionsandusescanbeswitchedoff),

andselectivedisplayof theanalysesof only somefunctionsandprocedures.

Iterationconstructsaretreatedaslinearblockscontainingthedecisionstatementfollowed (while,

for), or preceded(repeat),by thesubgraphsdescribingtheiterationbody.Conditionalbranching
constructs(if, caseof) consistof decisionnodesfollowed by two or morebranchsubgraphs.All
decisionpointsareconsideredto havep-uses(edgeassociateduses)asdefinedin [Fra88].

Metrics

Some of the static metrics that BGG currently computes are less common or are new and require

further explanations.

By default, path counts are computed so that each loop is traversed once. However, definition-use-

redefinition chain counts (see below) force on some loops one more iteration in addition to the first

traversal. User may change the default number of iterations through a loop through a switch (one

value for all loops). Cyclomatic number is computed in the usual way [McC76"]. Implemented data

flow visibility of all language constructs and variables is such that full definition-use coverage

implies full coverage of executable nodes (and in turn full statement coverage) [e.g. Nta88]. BGG

computes c-uses, p-uses, and all-uses according to def'mitions given in [Fra88].

Definition-use-(re)definition, d(u)d, chains are data-flow constructs defined in [Vou84]. It is one

of the metrics we are currently evaluating for sensitivity and effectiveness in software fault

detection. A d(u)d is a linear chain composed of a definition followed by a number of sequential
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uses,andfinally by a re-definitionof a variable.Thebasicassumptionsbehindthis metric area)
the longerad(u)d chain is themorecomplexis theuseof this variable,andb) themoreonere-

definesa variablethe morecomplexits data-flowpropertiesare.Thefin'stproperty is measured

through d(u)d length (seebelow), the secondproperty is measuredby counting d(u)d's. An
additional characteristicof d(u)d chainsis that they arecycle sensitiveand,for thosevariables

where they arepresent,they force at least two traversalsof loops within which a variable is
defined.However,full d(u)d coveragedoesnot imply full du-pair coverage.Thed(u)d metric is

intendedasa supplementarymeasuretootherdefinition-flowmetrics.

Definition of adu-pathcanbefound, for example,in [Fra88,Nta88].A singledu-pairmay have

associatedwith it oneor moredu-pathsfrom thedefinition to that use.We augmentthecountof
du-pathsanddu-pair countswith measuresof du-pathlengths.Theassumptionis that, from the

standpointof complexity(andhenceaffinity to errors),it is notonly thecountof du-pathsthatis
important,but also thelengthof eachpath.A definition which is usedseveraltimes,perhapsin
physically widely separatedplaces in the program,requiresmore thought and may be more

complexto handlethanonethat is definedandtheusedonly once,or for thefirst time. For each

du-pathwecomputelengthby countingthe numberof edgescoveredin reachingthepaireduse.
For everyvariablewealsocomputeanaveragelengthoverall du-pairsanddu-pathsassociated
with it. In a similar mannerwe define d(u)d-lengthas the numberof use-nodesbetweenthe

definition and redefinition points of the chain. Average d(u)d-length is the d(u)d-length

accumulatedover all d(u)d pairs divided by the numberof d(u)d's. We used(u)d-lengthsto
augmentd(u)d-counts.

We alsodistinguish betweenlinear (or acyclic) d(u)d's andloop generated,or cyclic, d(u)d's.
Cyclic d(u)d'sarethosewherethevariablere-definesitself or is re-definedin a cyclic chain.All
cyclic constructsarepotentiallymorecomplexthanthelinearones.Comparisonisdifficult unless

theloop countis limited, or loopingis avoided,in whichcasecyclic structureslendthemselvesto

comparisonwith acycliconesthroughunfolding.If iterativeconstructsareregardedonly through

du-pairs,manycyclesmaynotbedetectedsinceall du-pairsmightbegeneratedby goingarounda

looponly once.On theotherhand,for acyclic d(u)dto begenerated,asecondpassthroughaloop
is alwaysrequired.However,if therearenodefinitionsof avariablewithin a loop then theloop

would not be registeredby d(u)d constructsbelongingto that variable.Whena variableis only

used(or not usedat all) within a loop, its value is loop invariant and loop doesnot add any

informationthatthevariablecan(legally)transmitto otherpartsof thegraph.
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BGG also has facility for computing concentration (or density) 6f du-paths and d(u)d-paths through

graph nodes. We believe that graph (code) sections that show high du-chain and d(u)d-chain node

densities may have a higher probability of being associated with software faults than low density

regions.

IV. Examples

The examples given in this section derive from an ongoing project where BGG is being used to

investigate static and dynamic complexity properties of multi-version software, multi-version

software fault profiles, and effectiveness and efficiency of different testing strategies. We are using

two sets of functionally equivalent numerical programs for these studies. One set consists of 6 Pascal

programs (average size about 500 lines of code) described in [Vou86], the other set consists of 20

Pascal programs (average size about 2,500 lines of code) described in [Ke188].

158
159
160

161 const
162
163 vat
164
165
166
167

168 begin
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194 end;

function fptrunc(x: real): real;

largevalue = 1.Oe18;

remainder: real;

power: real;
big-part: real;
term: real;

remainder :-- abs(x);
if remainder > largevalue then

fptrunc := x
else begin

power := 1.0;
while power < remainder do

power := power * 10.0;
blgpart := 0.0;

while remainder > ma.xint do begin

while power > remainder do

power := power / 10.0;

term := power * trunc(remainder ] power);
remainder := remainder - term;
big-part := big'part + term;

end;

remainder := trunc(remainder) + bigpart;

if x < O.O then

fptrunc :=-remainder
else

fptrunc := remainder,
end;

Figure 2. Code section for which analysis is shown in Figures 3 and 4
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Figure 2 shows a section of the code from program L17.3 of the 6-program suite. Figure 3

illustrates the output that static analysis processor "BGG-Static" offers in the file "Static Analysis"

for the same procedure.

Outputs like the one shown in Figure 3 provide summary profile of each local and global symbol

found in the code. How many times it was defined (or pseudo-defined), used (or pseudo-used),

how many du-pairs it forms, how many d(u)d chains, etc. This static information can be used to

judge the complexity of procedures, or the complexity of the use of individual variables. In turn,

this information may help in deciding which of the variables and procedures need additional

attention on the part of the programmers and testers.

Figure 4 illustrates the detailed node, parameter, and global variable information available in the file

labelled "Detailed Graph Analysis" in Figure 1. Figure 4 is annotated (bold text) to facilitate

understanding. We see that all parameters (e.g. X), global variables (e.g. TRUNC), and built-in

functions (e.g. ABS) are pseudo-defined on entry. The parenthesized number following a

capitalized identifier is its number in the symbol table. Note that there are empty nodes, inserted by

BGG, which act as collection points for branches (e.g. Block #17). Because FPTRUNC was

defined in several places in the code, it is pseudo-used on exit from the function (in Block #18).

Note also that built-in function ABS is treated as a global variable, and its parameters are used only

(because BGG does not have insight into its code), but the situation is different in the case of

locally defined procedures.

For example, Figure 5 shows another section of the code in which procedure ADJUST calls a local

function FPMOD (line 285) which, in turn (not shown), calls function FPFLOOR, which then

calls function FPTRUNC. The details of the static analysis of the first ADJUST node where the

call chain begins are shown in Figure 6. Output lines relevant to the discussion are in bold. Note

that FPTRUNC is global from the point of view of ADJUST and is therefore pseudo-defined on

entry. The same is true for FPMOD and FPFLOOR. All three are reported as defined and then used

in line 285. For two of them the use actually occurs at a deeper level, in function FPMOD for

FPFLOOR, and in function FPFLOOR for FPTRUNC. The definitions occur in functions

themselves, e.g. for FPTRUNC it occurs in FPTRUNC itself. All these underlying definitions and

uses are propagated back to ADJUST.
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(1)

Procedcre FPTRUNC (193)

Parameter X (194)

Global TRUNC (28) used

Global MAXINT (55) used

Global ABS (7) used

Global FPTRUNC (193) defined

Procedure # 8 : FPTRUNC

global variable
global variable
built in function

Block # 1

Nodetype: NOT FOR
Predecessor list: none
Successor list: 2

Block start at line: 168

Block ends at line: 169
Definition-use list for this block:

ABS (7) is defined in line # 168

MAXINT (55) is deirmed in line # 168

TRUNC (28) is defined in line # 168

LARGEVALUE (195) is defined in line # 168
X (I94) is defined in line # 168
X (194) is used in line # 169

ABS (7) is used in line # 169 (1)

REMAINDER (196) is defined in line # 169

Block # 2

Nodetype: NOT FOR
Predecessor list: 1

Successor list: 4 3
Block start at line: 170

Block ends at line: 170
Definition-use list for this block:

LARGEVALUE (195) is used in line # 170

REMAINDER (196) is used in line # 170

_ Block # 3

Nodetype: NOT FOR
Predecessor list: 2

Successor list: 18
Block start at line: 170

Block ends at line: 171

Definition-use list for this block:

X (194) is used in line # 171

FPTRUNC (193) is defined in line # 171

Block # 17

Nodetype: NOT FOR
Predecessor list: 15 16
Successor list: 18
Block start at line: 193

Block ends at line: 193

Definition-use list for this block: empty

Block # 18

Nodetype: NOT FOR
Predecessor list: 3 17

Successor list: none
Block start at line: 194
Block ends at line: 194
Definition-use list for this block:

FPTRUNC (193) is used in line # 194

not a for-loop

pseudo-def
pseudo-def
pseudo-def
constant
pseudo-def

empty collector node

end node

pseudo.use

ABS is a built in function and is treated as a global identifier only

Figure 4. Elements of the detailed node analysis
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274
275
276
277 vat
278
279 begin
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296 end;

procedureadjust(varp: point);

twopi,piover2:real;

twopi :-pi * 2;
piover2:=pi / 2;

begin

end;

p.long := fpmod(p.long, twopi);

p.lat := fpmod(p.lat, twopi);
if p.lat > pi then

p.lat := p.lat - twopi;

if p.lat > l?iover2 then
pAat := pi - p.lat

else if p.lat < -piover2 then
p.lat := -pi - p.lat;

Figure 5. Code section for which static analysis is shown in Figure 6.

Of course, variables strictly local to FTPRUNC, such as "remainder" (see also Figures 2, 3 and

4), do not show at the point of call to FPMOD in ADJUST. It is obvious that global data flow can

add considerably to the mass of definitions, uses, and other constructs a programmer has to worry

about. Nevertheless, we believe that it is a good practice to make this information available so that

the full implication of a call to a procedure can be appreciated.

BGG provides coverage information on the program level, and on the procedure level. Figure 7

illustrates output from the dynamic coverage processor "BGG-Dynamic", delivered in the "Dynamic

Coverage Analysis" output file, for function FPTRUNC and a set of 103 test cases. In the example

some of the output information normally delivered by BGG has been turned off, e.g. all-uses.

For each procedure BGG-Dynamic fin'st outputs a summary of branch coverage information: the

block number, statement numbers encompassed by the block, the number of times the block was

executed, and the execution paths taken from the block (node). For example, node 5 in Figure 7 was

executed 724 times, 6 times to node 3, and 721 times to node 7. Branches which have not been

executed show up as having zero executions.
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Procedure ADJUST (214)

Parameter P.LONG (216) used
Parameter P.LONG (216) defined

Parameter P.LAT (217) used

Parameter P.LAT (217) defined

Global WR/TELN (35) used

Global FPFLOOR (200) used
Global ABS (7) used
Global MAXINT (55) used
Global TRUNC (28) used

Global FFTRUNC (193) used
Global FPMOD (203) used
Global PI (107) used
Global FPMOD (203) defined
Global FPFLOOR (200) defined

Global FPTRUNC (193) defined
.............................. gl w .............................

Procedure # 13 : ADJUST

Block # 1
Nodetype: NOT FOR
Predecessor list:
Successor list: 2
Block start at line: 279
Block ends at line: 287
Def'mition-use list for this block:

PI (107) is deemed in line # 279

FPMOD (203) is defined in line # 279
FPTRUNC (193) is defined in line # 279

TRUNC (28) is defined in line # 279
MAXINT (55) is defined in line # 279

ABS (7) is defined in line # 279

FPFLOOR (200) is defined in line # 279
WRITELN (35) is defined in line # 279
P.LAT (217) is defined in line # 279
P.LONG (216) is defined in line # 279

P (215) is defined in line # 279
PI (107) is used in line # 280
TWOPI (218) is defined in line # 280
PI (107) is used in line # 281

PIOVER2 (219) is defined in line # 281

TWOPI (2183 is used i_ line # 285

P.LONG (216) is used in line # 285
FPMOD (203) Is defined In line # 285

FPFLOOR (200) is defined in line # 285
FPTRUNC (193) is defined in line # 285
WRITELN (35) is used in line # 285

FPFLOOR (200) is used in line # 285
ABS (7) is used in line # 285
MAXINT (55) is used in line # 285
TRUNC (28) is used in line # 285

FPTRUNC (193) is used in line # 285
FPMOD (203) is used in line # 285

P.LONG (216) is defined in line # 285

TWOPI (218) is used in line # 287
P.LAT (217) is used in line # 287
FPMOD (203) is defined in line # 287
FPFLOOR (200) is def'med in line # 287
FPTRUNC (193) is defined in line # 287
WRITELN (35) is used in line # 287
FPFLOOR (200) is used in line # 287
ABS (7) is used in line # 287
MAXINT (55) is used in line # 287
TRUNC (28) is used in line # 287
FPTRUNC (193) is used in line # 287
FPMOD (203) is used in line # 287
P.LAT (217) is defined in line # 287

Figure 6. Elements of the detailed
static analysis of the procedure shown
in Figure 5.

procedure in scope, global variable

pseudo-definition

pseudo-definition

Beginning of the list of
< ........................ visible definitions and uses

for line 285 from Figure 5.
calls FPFLOOR
calls FPTRUNC

actually used in FPMOD

actually used in FPFLOOR
actually used in ADJUST

< ........................ List for line 285 ends

< ........................ Block #1 ends
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definition-use pairs

70 linear blocks

o_" 60 "q branches

=> 50

t_ _ Efficiency of Random Testing

30
10 0 1 01 1 0 2 1 0 3

Number of Test Cases

Figure 8. Coverage observed during random testing of a program from the 6-version set.
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Figure 9. Comparison of linear block coverage observed for two random testing profiles and a
functional data for a program out of the 20-version set.
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The branch table is followed by a summary of coverage by metrics: coverage for non-empty blocks

(blocks that have not been inserted by BGG), lines of code within executable nodes, and branch

coverage. This is followed by coverage for data flow metrics by symbol name. The static

definition, use, du-pair, d(u)d, p-use, etc. counts for a variable are printed along with the

information on its the dynamic coverage expressed as percentage of the executed static constructs.

For each identifier, this is followed by a detailed list and description of constructs that have not

been executed (e.g. du-pairs or p-uses). Execution coverage output tables can be printed in

different formats (e.g. counts of executed constructs, rather than percentages), and with different

content (e.g. all-uses).

100"- lo

90

i =°
7o

6O

50

Functional Test Data

(20-Version Set: Pro__,

I

• • • • ,| • a • i i I • u • • • • i g 0

0 0 101 10 2 10 3

,4 E=
z
>_

Numberof Test Cases

Figure 10. Linear block coverage and fault detection efficiency observed for program P9 of the
20-version set with functional test cases.

BGG can also be used to obtain coverage growth curves for a particular test data set. Figures 8 and

9 illustrate this. They show some of the coverage growth curves we have observed with random

and functional (designed) test cases for the program L17.3 of the 6-version set using BGG

described here, and for a program P9 from the 20 version set using an early version of the system.
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It is interestingto notethatboth figuresshowcoveragethatfollows anexponentialgrowthcurve
andreachesaplateauextremelyquickly. For the smallerprogram(Figure8, about600 linesof

code)metricsreach saturationalreadyafter about 10cases,while for the largerprogram(20-

versionset,about2,500linesof code)this happensafterabout100cases.Thereis alsoamarked
differencein theinitial slopeandtheplateaulevel obtainedwith differenttestingprofiles.

Oncethecoverageis closeto saturationfor a particular testing profile, its fault detection efficiency

drops sharply. This is illustrated in Figure 10 where we plot the coverage provided by the

functional testing profile shown in Figure 9, and the cumulative number of different faults detected

using these test cases. Out of the 10 faults that the code contained, 9 were detected with the

functional data set used within the f'n-st 160 cases.

It is clear that apart from providing static information on the code complexity, and dynamic

information on the quality of test data in terms of a particular metric, BGG can also be used to

determine the point of diminishing returns for a given data set, and help in making the decisions on

when to switch to another testing prof'de or strategy.

V. Summary

We have described a research tool that computes and analyses control and data flow in Pascal

programs. We plan to extend the tool into C language. We have found BGG to be very useful in

providing information for code complexity studies, in directing execution testing by measuring

coverage, and as a general unit testing tool that provides programmers with information and insight

that is not available through standard UNIX tools such as the pc compiler, or the pxp processor.

We are currently using BGG in an attempt to formulate coverage based software reliability models

by relating code complexity, testing quality (expressed through coverage), and the number of faults

that have been discovered in the code.
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